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Abstract

Conformal antenna arrays are popular antennas for aircraft, space-

craft and land vehicle platforms due to their inherent low weight, cost

and drag properties. However, to date there has been a dearth of

rigorous analytical or numerical solutions to aid the designer. In fact,

it has been common practice to use limited measurements and planar

approximations in designing such non-planar antennas. In this paper,

we extend the finite element-boundary integral method to radiation

by cavity-backed structures in an infinite, metallic cylinder. The for-

mulation is used to investigate the effect of cavity size on the radiation

pattern for typical circumferentially and axially polarized patch anten-

nas. Curvature effect on the gain, pattern shape and input impedance

is also studied. Finally, the accuracy of the FE-BI approach for a

microstrip patch array is demonstrated.
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1 Introduction

Modern aircraft and missile deigns seek to utilize conformal antenna arrays

rather than conventional protruding antennas due to their low weight, low

drag, low cost and flexibility. Although most useful aircraft surfaces possess

some curvature, the vast majority of available design information is restricted

to planar elements. Indeed, the literature is rich with approximate [1], nu-

merical [2] and experimental [3] design and characterization data for planar

structures. The most common antenna element is a microstrip patch printed

on a dielectric coated groundplane. Dielectric coated cylinders have also been

investigated using approximate [4] and numerical [5] approaches.

Often, it is desirable to enclose each radiating element within a metal-

lic cavity to suppress parasitic substrate coupling [6]. Approximate models,

such as the cavity model, are typically not modified to account for the metal-

lic sidewalls of the surrounding cavity since the approximations involved in

this approach limits its operation to resonant patches. Experience has shown

that a surrounding cavity does not effect the radiation pattern of a resonant

patch antenna. However, since integral equation formulations are meant to

operate at any frequency, these formulations need be modified to account for

the metallic sidewalls. This is done by partitioning the problem into an inte-

rior cavity region and an open exterior region and enforcing field continuity

across the aperture. Such an approach requires a complicated dyadic Green's

function for the interior region and as is the case with all integral equation

formulations, the resulting linear system is associated with a fully populated

matrix and hence imposes a large O(N 2) memory and computation demand.

Additionally, most integral equation formulations utilize equivalent surface

currents and are therefore inappropriate for modeling inhomogeneous sub-

strates.

An alternative formulation, utilizing the Finite Element-Boundary Inte-

gral (FE-BI) method, was proposed by Jin and Volakis [7] which was suitable

for cavity-backed antennas recessed in a metallic groundplane. As with all

partial differential equation formulations, this approach is associated with a

highly sparse system which requires only O(N) storage. Additionally, when

coupled with a Biconjugate Gradient-Fast Fourier Transform (BiCG-FFT)

solver, the computational burden is only O(N log(N)). Since this approach

is a volume formulation, inhomogeneous substrates may be readily modeled.

This FE-BI method has been successfully used for scattering and antenna



performanceanalysis in planar platforms.
Recently,the FE-BI method wasextended to cylindrical-rectangular and

wraparound cavitiesfor scattering calculations [8]. New divergencefree, high
fidelity edge-basedelementswere presentedalong with an efficient solution
strategy which exploited an asymptotic evaluation of the appropriate dyadic
Green's function as well as the BiCG-FFT solver. The resulting computer
code wasshown to accurately compute the scattering by planar and highly
curved elements.This paper investigatesthe accuracyof this FE-BI method
formulation for antenna performanceanalysis. Both radiation pattern and
input impedance calculations will be compared with known results. The
effect of curvature on the pattern shape, the resonancebehavior and the
input impedancewill be explored.

2 Formulation

In this section, the FE-BI formulation appropriate for radiation analysis is

developed for cavity-backed antennas recessed in an infinite metallic cylinder

(see figure 1). As usual, the finite element formulation permits substantial

modeling flexibility, including cavity inhomogeneities, lumped loads and mi-

crostrip feeding lines.

The FE-BI formulation begins with the weak form of the vector wave

equation followed by specification of appropriate vector shape functions and

dyadic Green's function. The resulting FE-BI equations are then used to

solve for the total electric fields within the cavity and on the aperture (see

for example Volakis et al. [9]). For the specific configuration at hand, the

weak form of the wave equation can be written as

fv, {V x l_j(P,¢,z)" _T x I_i(P,¢, z)¢,

-k2oc,.(p, ¢,z)l_j(p, ¢,z) • l_i(p, ¢,z)}pdpdCdz

+(k°a)_"(J)'a(i) fs, _ [W,(a, ¢, z). _(a, ¢,z)×

_(a,¢,5) ×/_(a,¢',z'). Wj(a,¢',z')] de' dz'dfdz = f_,,t + f:_t (1)

In this, l_i are vector basis functions with support over the volume V,. which is
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Figure 1: Illustration of a typical cavity-backed antenna situated on a metal-

lic cylinder and the associated coordinate system.

40



associatedwith the i t_ degree of freedom, and in a similar fashion, S, and _',":

represent aperture surfaces associated with the i 'h and jth degrees of freedom,
1

respectively. The appropriate dyadic Green's function is denoted by _ and it

has convolutional (¢ = _b-¢', _ = z-z') form when evaluated on the surface

of the cylinder, p = a. The unprimed coordinates represent the test point

while the primed ones denote the source point. The free-space propagation

constant is given by k0 = _, where A0 is the free-space wavelength The
)t u

cavity is filled with an inhomogeneous material having relative constitutive

properties cr and #r. The function 6a(i)5,,(j) is the product of two Kronecker

delta functions. Hence, it identifies which pairs of unknowns belong to the

aperture and accordingly contribute to the boundary integral sub-matrix.

The FEM-BI equation (1) may be rewritten in matrix form as

p}
[o] [o] = (2)

where the entries of [.A] are due to the FEM portion of the formulation and

[9] is the boundary integral sub-matrix. In (2), E_ v and E_i,',t denote degrees

of freedom associated with the aperture and interior fields, respectively. In

this, fi,,,t are functions of the internal excitation and for this paper a radially

oriented probe feed is considered.

The matrix entries, [A] and [_7], are given in a previous paper [81. In

addition, the vector elements, dyadic Green's function evaluation and far-

zone field formulae are given and are therefore not repeated here. Hence, we

need only specify the interior source functional in order to model a radiating

element. That functional is given for general impressed sources as

ok, z)p dp de dz

(3)

where fi,.,t and .,_'Ii''t are the impressed electric or magnetic current densities

representing the sources. For a radially (_) directed probe feed, the impressed

monopole current located at (G, z,) is given by

fint = _Io6((_-¢.)( z- z,) (4)
P
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which results in an excitation function (3)

-- --jrt%Lolo----Tln -- --
oti ni

if the edge-based elements of [8] are used.

Having specified the finite element and boundary integral matrices as well

as the internal excitation for those systems, we use the BiCG method to solve

for the unknown electric fields throughout the computation domain. The FE

matrix is highly sparse and hence may be efficiently solved using a sparse

matrix-vector product. It is also important to note that the matrix-vector

product associated with the boundary integral can be performed using FFTs.

Hence, the resulting BiCG-FFT solver is highly efficient without consuming

excessive memory resources: The electric field may now be used to compute

antenna parameters such as the gain and the input impedance.

The radiation pattern is computed by integrating the aperture fields with

the far-zone dyadic Green's function given in [8]

_q'(_,0,¢) jYokoaIs _2(,',o, ¢; a, ¢',z') .

×fzia, z'l] (6)

with (r,0,¢) indicating the observation point in spherical coordinates. In the

far-zone, the electric and magnetic fields are related by

E; = -ZoH_
E; = ZoH_ (7)

which is used to compute the antenna gain

[ ]ads(O,¢) = lO]Oglo 4_r _ I/7(0,¢)12 +lOlogm[ZoR,nj (8)

where A_ is the wavelength in centimeters, P_, is the input resistance which

is given below and E" is the radiated electric field as r --* oc.

In addition to the antenna gain, designers are concerned with the input

impedance of an antenna for feedline matching purposes. The FEM approach

allows the calculation of the input impedance of the radiating structure in a

42



rather elegantmanner. The input impedanceis comprisedof two contribu-
tions [10]

Zin = Zp + ZD (9)

where the first term is the probe's self-impedance ( e.g. the probe's impedance

in the absence of the patch) and the second term is the contribution of the

patch current to the total input impedance. The probe self-impedance ac-

counts for the finite radius of the probe and hence is omitted when a zero-

thickness probe is assumed. Ignoring the probe-feed's self impedance, we

have [10]

z;'. 1 fv,= -_ /_(p,¢,z). f"(p,¢,z)pdpdCd- (10)

where the impressed current is given by (4), Vii refers to the volume elements

containing the probe-feed, the electric field is the interior field at (p,¢,z)

and Io is the constant current impressed on the probe. Utilizing (4) and

assuming the edge-based elements presented in [8], the input impedance (10)
is evaluated as

E(i) giP_ln( pb)loaihi _ [(¢_-¢i)(z,-,zi)] (11)

which must be summed over the four radial edges of the element which con-

tains the feed. Having specified the PE-BI system, interior excitation func-

tional and appropriate antenna parameters such as gain and input impedance,

the formulation may be used to analyze the radiation characteristics of sev-

eral interesting configurations.

3 Results

The FE-BI formulation presented in [8] may be used for antenna performance

studies by making the modifications outlined in this paper. This method can

be used to determine the role of curvature in the radiation pattern and the

input impedance of a cavity-backed patch antenna. Additionally, designers

are concerned with the effect of the cavity size might have on antenna perfor-

mance. In particular, since the cavity is used to suppress parasitic substrate
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modes, varying the cavity sizecan be used to determine the effect of such
modeson the radiation pattern.

Two types of antennaelementsare investigated and they are shown in
figure 2 where eachpatch is act ° x b in size with a denoting the radius of the

cylinder. A patch whose radiating side walls are axially oriented is termed

an axially polarized patch and is fed at _0 = _. Circumferentially (or az-

imuthally) polarized patches have radiating walls forming constant z-surfaces

and are............typically fed at z, = _.__-Observat_on i-n :the 0= 90 ° plane is the E-

plane for circumferentially polarized patched and the H-plane for axially po-

larized elements. The terminology originates with the cavity model for patch

antennas. We will now characterize a typical cavity-backed patch antenna.

Several computed and measured antenna patterns have been published for

patches printed on a coated cylinder. One such patch, which is 3.5 cm × 3.5

cm, was used by Sohtell [11] to compare the accuracy of the cavity model [4] to

a surface current integral equation [5]. The measured data was taken at 2.615

GHz for a metallic cylinder which was 63.5 cm long and had a radius of a =

14.95 cm. The cylinder was coated with a 0.3175 cm uniform dielectric h_ng

relative permittivity of _, = 2.32. Data was taken for -180 ° < _b < 180 ° in

the 0 = 90 ° plane corresponding to the E-plane for circumferentially polarized

elements and the H-plane for axially polarized ones. Figure 3 compares these

measured patterns with data generated using the FE-BI formulation for an

identical patch placed within a 360 ° x 7 cm cavity. This wraparound cavity

best simulated the measured coated cavity. Note that the H-plane patterns

are symmetric due to the symmetric placement of the feed, whereas the

E-plane patterns are not symmetric, The placement of the feed was not

specified in [11]; however, the agreement for the E-plane pattern shown in

figure 3 indicates that the position used in the FE-BI model (a$8 = -1 cm)

is reasonable. The feed was placed at z, = -1 cm for the axially polarized

(H-plane) case.

In a previous paper [8], discrete cavity arrays were found to have a sig-

nificantly lower radar cross section (RCS) compared to a wraparound array.

Thus, the size of the cavity had a significant effect on the scattering prop-

erties of the array. The two antennas presented by Sohtell [11] were placed

within cavities which were 7 cm high and approximately 30, 50, 90, 180, 270

or 360 degrees in angular extent. Figure 4 illustrates that azimuthal cavity

size has little effect on the radiation pattern for a circumferentially polarized

element. A similar comparison for the axially polarized patch is shown in
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Figure 2: Illustration of (a) a circumferentially polarized patch element; and

(b) an axially polarized patch element. The radius of the cylinder is denoted

by a.
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Figure 3: Comparison of measured [11] and computed data for a circumferen-

tially polarized element (E-plane) and an axially polarized element (H-plane).

The antenna (3.5 cm x 3.5 cm ) was printed on a 14.95 cm cylinder with a

0.3175 cm coating (er = 2.32). The probe feed was place at (a¢o, z,) = (-

1.0,0.0) for the circumferentially polarized patch and at (a¢8, zs) = (0.0,-1.0)

for the axially polarized antenna.
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Figure 4: Effect of cavity size on the E-plane radiation pattern of a circum-

ferentially polarized patch antenna.
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figure 5. The back lobe of the antenna (near _b= 180°) is very small for
cavities lessthan 180° in extent but increases for larger cavities. For cavities

which lle on the forward face of the cylinder, the substrate modes diffract off

the cavity walls; an effect which has little influence on the main lobe of the

pattern. However, for wraparound cavities and cavities which extend into

the back side of the cylinder, the substrate modes shed like creeping waves

giving rise to the back lobe.

Having established the effect of cavity size on the antenna patterns, it is

instructive to gauge the effect that curvature has on the resonance behavior

(or gain) of patch antennas. The two antennas were placed in 14 c_m × 14

cm cavities which were place on cylinders with increasing radius. The fre-

quency was allowed to vary from 2.4 CHz to 2.7 GHz and the peak radiated

power was recorded at each frequency. For this paper, the radiated power is

recognized as the first term of (8). Figure 6 illustrates that the resonance fre-

quency increases with increasing curvature for a circumferentially polarized

antenna, but the maximum gain is similar regardless of element curvature.

Note in thet:avity model, the radiating edges for a circumferentially polar-

ized patch are the azimuthal walls of the cavity (see figure 2) which have

a constant separation regardless of the cylinder radius. However, the axi-

ally polarized patch has decreasing resonant gain with increasing curvature_

as shown in figure 7. For this patch, radiation is attributed to the axial

magnetic walls of the cavity model which have increasing angular separation

with decreasing curvature. These walls radiate strongly away from the pat-

tern peak (_b = 0°). Accordingly, the gain of an axially polarized antenna

decreases with increasing curvature. The radiation pattern of a circumferen-

tially polarized antenna is largely unaffected by curvature as shown in figure

8 when excited at a resonant frequency. However, the radiation pattern of

the axially polarized antenna broadens as the curvature increases and this is

illustrated in figure 9. Once again, both relationships are readily explained

by considering the effect that curvature has on the orientation of the cavity

model radiating walls.

In addition to the gain and pattern of an antenna, designers require the

input impedance for matching purposes. For the antenna examined above (in

a 14 cm × 14 cm cavity), the input impedance was calculated from 2.4 GHz

to 2.7 GHz for various cylinder radii. Figure 10 illustrates that the input

impedance of a circumferentially polarized patch antenna is not affected by

curvature while figure 11 shows that increased curvature reduces the input
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Figure 5: Effect of cavity size on the H-plane radiation pattern of an axially

polarized patch antenna.
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Figure 6: Resonance behavior of a circumferentialty polarized patch antenna
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Figure 7: Resonance behavior of an axially polarized patch antenna for var-

ious cylinder radii.
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Figure 8: Variation of the radiation pattern shape with respect to curvature

for a circumferentially polarized antenna.
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Figure 9: Variation of the radiation pattern shape with respect to curvature

for an axially polarized antenna.
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Figure 10: Input impedance of a circumferentially polarized patch antenna

for various cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and

the cavity size was 14 cm × 14 cm.
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Figure 11: Input impedance of an axially polarized patch antenna for various

cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and the cavity
size was 14 cm × 14 cm.
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impedanceof an axially polarized patch. This observation agrees tile tile

results reported by Luk el. al. [12].

In addition to single patches, the FE-BI formulation may be used to de-

sign microstrip arrays. Such an approach includes mutual coupling between

elements which is ignored by the cavity model. Furthermore, the FE-BI for-

mulation consumes less computational resources than a comparable integral

equation formulation due to the sparsity of the FE matrix. The H-plane

pattern of a four element array was measured to gauge the accuracy of the

FE-BI approach. Each element is 2 cm x 3 cm and placed within a 5 cm x

6 cm x 0.07874 cm cavity which is filled with a dielectric having er = 2.17.

The cylinder is 91.44 cm long and has a radius of 15.24 cm. The cavities

are placed symmetrically around the cylinder (e.g. a patch is centered at

0 °, 90 °, 180 ° and 270°). Only the patch centered at 0 ° was excited while

the remaining patches were terminated with a 50fl load. The driving patch

is axially polarized and the feed is located at zs = -0.375 cm. Figure 12

illustrates the excellent agreement between the FE-BI formulation and the

measured data.

4 Conclusions

In this paper, the FE-BI formulation for cavity-backed antennas was pre-

sented. The data generated by this code for a common cylindrical-rectangular

patch antenna compared favorably with measured data. Having validated the

implementation, the FE-BI method was used to study the radiation prop-

erties of a circumferentially and axially polarized patch antenna. The az-

imuthal cavity size was found to have little effect on the circumferentially

polarized E-plane pattern. However, for the H-plane pattern of an axially

polarized element, the back lobe is significantly larger for cavities which ex-

tend from the front side to the back side of the cylinder. A wraparound

antenna exhibited the largest back lobe implying that this lobe is a result of

creeping wave shedding. Diffraction due to the creeping wave is suppressed

for cavities not extending to the back side of the cylinder. The presence of a

back lobe must be considered when designing low observable, jam-resistant

antennas or antennas on complex platforms (e.g. an antenna near the rear

stabilizer). Thus, as was the case for scattering reduction, it is advisable to

use the smallest cavity possible.
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Figure 12: H-plane pattern for a four element patch array. Each patch is

2 cm × 3 cm and are placed symmetrically around the cylinder. Only the

patch centered at 0° is fed while the other patches are terminated with 50f_

loads.
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The effect of curvature on the resonance, radiation pattern shape and in-

put impedance was studied. Both circumferentially and axially polarized an-

tennas were considered and was found that the resonant fi'equency increased

with increasing curvature for both antennas. However, while the gain of the

circumferentially polarized patch remained constant, the gain of the axially

polarized patch decreased with increasing curvature. Such an effect is read-

ily explained by Considering which walls of the cavity model radiate for each

polarization (see figure 2). The radiation pattern for axially polarized anten-
nas broadens with increasing curvature while the corresponding patterns for

circumferentially polarized antennas is unaffected by curvature. The input

impedance of the circumferentially polarized antenna was not affected by cur-

vature while the input impedance of the axially polarized antenna decreased

With increasing curvaturL We therefore conc]udethat axially polarized an-

tennas are strongly affected by curvature while circumferentially polarized

antennas are not affected by curvature.

Since the cavity model does not include mutual coupling and the usual

integral equation formulations are associated with high storage and com-

putational demand, the FE-BI formulation is attractive for array analysis.

The H-plane pattern of a discrete four element wraparound array compared

favorably with measured data.
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